Тема урока: Факторы, влияющие на скорость химической реакции.

Тип урока: урок изложения нового материала.

Форма урока: беседа (с постановкой опытов).

Методы организации деятельности: словесный, практический, частичнопоисковый.

Образовательная цель: продолжить формирование понятия о скорости химической реакции, показать влияние природы реагирующих веществ, их концентрации, площади соприкосновения, температуры и катализатора на скорость химических реакций. Совершенствовать умения учащихся обращаться с лабораторным оборудованием.

Развивающая цель: развитие наблюдательности, продолжить формирование умения высказывать свои мысли, логически рассуждать, делать обобщения и выводы, развивать практические навыки.

Воспитательная цель: продолжить формирование гуманных отношений на уроке между учителем и учениками, умения слушать друг друга и учителя, воспитывать чувство сопричастности общему делу.

Ход урока:

- 1. Орг. момент.
- 2. Проверка домашнего задания и подготовка учащихся к активному и сознательному усвоению материала.
- Мы с вами рассмотрели, что такое химическая реакция, познакомились с основными типами химических реакций, научились отличать их от физических явлений. На прошлом уроке мы с вами говорили о продолжительности химических реакций, о том, что некоторые реакции идут быстро, а некоторые медленно, рассмотрели понятие скорости химической реакции.

Вопросы для повторения:

- 1) Дайте определение скорости химической реакции.
- 2) У доски напишите математическое выражение скорости химической реакции, поясните все значения и раскройте смысл формулы.
- 3) В чем измеряется скорость химической реакции?
- 4) Что такое гомогенные и гетерогенные реакции? Чем отличается определение скорости гетерогенной реакции?
- 5) Какой раздел химии изучает скорость химической реакции? Для чего изучают понятие о скорости химической реакции?
- 3. Этап усвоения новых знаний.
- Сегодня на уроке мы с вами должны рассмотреть, от каких факторов зависит скорость химической реакции.
- ? Как вы думаете от чего зависит скорость химических реакций?
- Скорость химических реакций зависит от многих факторов, включая природу реагирующих веществ, концентрацию реагирующих веществ, температуру, наличие катализатора, поверхность реагирующих веществ. Рассмотрим влияние каждого из этих факторов на скорость химической реакции.

А) Опыт 1. В одну пробирку нальем 2 мл хлорида бария, а в другую 2 мл тиосульфата натрия, в обе пробирки прильем одинаковое количество раствора серной кислоты. Что наблюдаете? (в пробирке с хлоридом бария мгновенно выпадает белый осадок, во второй пробирке через некоторое время выпадает желтый осадок).

Опыт 2. (*опыт выполняют учащиеся*). В две пробирке опустите по грануле цинка. Затем в первую пробирку прилейте 2 мл соляной кислоты HCl, а во вторую пробирку прилейте столько же уксусной кислоты CH_3COOH . Что наблюдаете? Сделайте вывод.

- В результате наблюдений можно заметить, что с большей скоростью цинк реагирует с соляной кислотой, медленнее с уксусной кислотой. То есть, на скорость химической реакции оказывает влияние природа реагирующих веществ (состав вещества, соляная — бескислородная кислота и является неорганической, а уксусная органическая кислота).

Таким образом, первым фактором, оказывающим влияние на скорость химической реакции — это 1. природа реагирующих веществ (запишем в тетради).

- E Опыт 3. Нальем в три пробирки раствор тиосульфата натрия, в первую 5 мл, во вторую 2,5мл, в третью 1мл, затем в каждую прильем до 5 мл воды. Где будет большая концентрация раствора тиосульфата натрия? Прильем в каждую, начиная с третьей по 3 мл раствора серной кислоты. Что наблюдаете?
- Раньше всего осадок выпадает в первой пробирке, там, где выше концентрация. Ведь для химического взаимодействия необходимо, чтобы частички, из которых состоят вещества, столкнулись. Чем больше число столкновений, тем быстрее протекает реакция. А число столкновений тем больше, чем больше концентрация реагирующих веществ.
- -2. Зависимость скорости от концентрации реагирующих веществ, выражает основной закон химической кинетики **закон действующих масс** (К. Гульдберг и В. Вааге):

Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ, взятых в степенях, равных их коэффициентам. (Прочитать на листочках).

Скорость для химической реакции a**A**+ b**B**= c**C**+ d**D** определяют по формуле:

-Этот закон не распространяется на вещества, находящиеся в твердом состоянии, так как считается, что их концентрация постоянна, поскольку они реагируют лишь на поверхности.

Например, для реакции
1
 2Cu + O_{2} \longrightarrow 2CuO $v = k C_{O2}$

B) Опыт 4. В две пробирки насыпаем немного оксида меди (II) СиО и приливаем в каждую по 2 мл серной кислоты, первую отставляем в штативе, вторую нагреваем. Что наблюдаете? Где химическая реакция происходит быстрее? С чем это связано?

-3. Зависимость скорости реакции от температуры сформулировал в виде правила Вант – Гофф:

При повышении температуры на каждые 10 ⁰C скорость реакции увеличивается в 2 -4 раза. (Прочитать на листочках).

Математическая запись:

$$v_{t2} = v_{t1} \ y_{10}^{t2-t1}$$

, где у – температурный коэффициент

- -Таким образом, Еще одним фактором, влияющим на скорость химической реакции, является температура.
- *П* Опыт 5. В две пробирки нальем по 2 мл соляной кислоты, и опустим в одну из них порошок железа, в другую кусочек железа. Что наблюдаете, в какой пробирке реакция идет быстрее. Сделайте вывод.
- Площадь соприкосновения также влияет на скорость химической реакции, чем больше 4. площадь соприкосновения реагирующих веществ, тем больше скорость химической реакции. (в тетрадь)
- Д) Скорость химической реакции будет зависеть и от 5. катализатора (Вещества, которые изменяют скорость реакции, а сами к концу процесса остаются неизменными как по составу, так и по массе).

Опыт 6. В пробирку наливаем 3-4 мл H_2O_2 , затем добавляем немного MnO_2 , вносим тлеющую лучинку - она вспыхнет, значит выделяется кислород.

Опыт 7. (учащиеся выполняют на партах). В две пробирки поместите гранулы цинка, и добавьте в каждую по 2 мл соляной кислоты, затем в каждую добавьте раствор перманганата калия КМпО₄. Во вторую пробирку добавьте немного кристаллического нитрата натрия. Что наблюдаете? В какой пробирке реакция идет быстрее. Почему? Сделайте вывод.

4. Обобщение:

-Итак, мы выяснили, что скорость химической реакции зависит от следующих факторов: от природы реагирующих веществ, концентрации, температуры, площади соприкосновения реагирующих веществ, от катализатора (более подробно рассмотрим на следующем уроке).

5. Закрепление.

Тест (устно):

- 1. От чего зависит скорость химической реакции?
 - а) от природы реагирующих веществ
 - б) от типа химической реакции
 - в) от температуры
 - г) от катализатора
 - д) от концентрации веществ
- 2. Растворение железа в соляной кислоте будет замедлятся при
 - а) увеличении концентрации кислоты
 - б) раздроблении железа
 - в) разбавлении кислоты
 - г) повышении температуры

3. Какая запись выражает закон действующих масс для реакции:

$$2SO_2 + O_2 = 2SO_3$$

- a) $v = k [SO_2]^2 [O_2]$
- б) $v = k [SO_3]^2$
- B) $v = k [SO_2] [O_2]$
- Γ) $v = k [SO_3]$
- 4. При повышении температуры скорость реакции
 - а) не изменяется
- б) повышается
- в) понижается
- 5. С наибольшей скоростью при комнатной температуре будет протекать реакция магния с
 - а) 1% раствором соляной кислоты
 - б) 5% раствором соляной кислоты
 - в) 10% раствором соляной кислоты
 - г) 20% раствором соляной кислоты

Вопросы (устно):

- 1. Почему продукты питания хранят в холодильниках?
- **2.** Почему горение веществ (серы, угля, фосфора, железа) в чистом кислороде происходит гораздо энергичнее, чем на воздухе?

Задачи:

- **1.** Для реакции $2CO + O_2 \longrightarrow 2CO_2$ запишите выражение закона действующих масс.
- **2.** Температурный коэффициент равен 2. Во сколько раз увеличится скорость реакции при повышении температуры от 30^{0} С до 60^{0} С?
- **3.** Вычислите скорость химической реакции, протекающей по уравнению A + B = C (все вещества газообразные), если концентрация вещества A 0.04 моль/л, B 0.05 моль/л, а константа скорости реакции 1 л/моль с.
- *5. Рассчитайте скорость реакции (по закону действующих масс) $2\text{CO} + \text{O}_2 \longrightarrow 2\text{CO}_2$ при концентрациях CO 0.04 моль/л, $\text{O}_2 0.1$ моль/л, константа скорости реакции равна 1.2 л/моль с.
- ***6.** При охлаждении реакционной смеси с 50 до 20⁰ С скорость реакции уменьшилась в 27 раз. Вычислите температурный коэффициент реакции.
- **6.** Домашнее задание: & 30, упр. 5,6.